Introducción a Spring Data MongoDB

1. Información general

Este artículo será una introducción rápida y práctica a Spring Data MongoDB .

Repasaremos los conceptos básicos usando tanto MongoTemplate como MongoRepository usando ejemplos prácticos para ilustrar cada operación.

2. MongoTemplate y MongoRepository

El MongoTemplate sigue el patrón de plantilla estándar en la primavera y proporciona una lista para ir, API básica para el motor de persistencia subyacente.

El repositorio sigue el enfoque centrado en Spring Data y viene con operaciones API más flexibles y complejas, basadas en los patrones de acceso conocidos en todos los proyectos de Spring Data.

Para ambos, debemos comenzar por definir la dependencia, por ejemplo, en pom.xml , con Maven:

 org.springframework.data spring-data-mongodb 3.0.3.RELEASE 

Para comprobar si se ha lanzado alguna versión nueva de la biblioteca, haga un seguimiento de los lanzamientos aquí.

3. Configuración para MongoTemplate

3.1. Configuración XML

Comencemos con la configuración XML simple para la plantilla de Mongo:

Primero, necesitamos definir el bean de fábrica responsable de crear instancias de Mongo.

A continuación, necesitamos definir (y configurar) el bean de plantilla:

Y finalmente, necesitamos definir un postprocesador para traducir cualquier MongoException lanzada en las clases anotadas de @Repository :

3.2. Configuración de Java

Ahora creemos una configuración similar usando la configuración de Java extendiendo la clase base para la configuración de MongoDB AbstractMongoConfiguration :

@Configuration public class MongoConfig extends AbstractMongoClientConfiguration { @Override protected String getDatabaseName() { return "test"; } @Override public MongoClient mongoClient() { ConnectionString connectionString = new ConnectionString("mongodb://localhost:27017/test"); MongoClientSettings mongoClientSettings = MongoClientSettings.builder() .applyConnectionString(connectionString) .build(); return MongoClients.create(mongoClientSettings); } @Override public Collection getMappingBasePackages() { return Collections.singleton("com.baeldung"); } }

Nota: No necesitamos definir el bean MongoTemplate en la configuración anterior, ya que ya está definido en AbstractMongoClientConfiguration.

También podemos usar nuestra configuración desde cero sin extender AbstractMongoClientConfiguration , de la siguiente manera:

@Configuration public class SimpleMongoConfig { @Bean public MongoClient mongo() { ConnectionString connectionString = new ConnectionString("mongodb://localhost:27017/test"); MongoClientSettings mongoClientSettings = MongoClientSettings.builder() .applyConnectionString(connectionString) .build(); return MongoClients.create(mongoClientSettings); } @Bean public MongoTemplate mongoTemplate() throws Exception { return new MongoTemplate(mongo(), "test"); } }

4. Configuración para MongoRepository

4.1. Configuración XML

Para hacer uso de repositorios personalizados (ampliando MongoRepository ), necesitamos continuar con la configuración de la sección 3.1 y configurar los repositorios:

4.2. Configuración de Java

De manera similar, construiremos sobre la configuración que ya creamos en la sección 3.2 y agregaremos una nueva anotación a la mezcla:

@EnableMongoRepositories(basePackages = "com.baeldung.repository") 

4.3. Crea el repositorio

Ahora, después de la configuración, necesitamos crear un repositorio, ampliando la interfaz existente de MongoRepository :

public interface UserRepository extends MongoRepository { // }

Ahora podemos conectar automáticamente este UserRepository y usar operaciones de MongoRepository o agregar operaciones personalizadas.

5. Usando MongoTemplate

5.1. Insertar

Comencemos con la operación de inserción; también comencemos con una base de datos vacía:

{ }

Ahora si insertamos un nuevo usuario:

User user = new User(); user.setName("Jon"); mongoTemplate.insert(user, "user");

La base de datos se verá así:

{ "_id" : ObjectId("55b4fda5830b550a8c2ca25a"), "_class" : "com.baeldung.model.User", "name" : "Jon" }

5.2. Guardar - Insertar

La operación de guardar tiene semántica de guardar o actualizar: si hay un id, realiza una actualización, si no, hace una inserción.

Veamos la primera semántica: la inserción; aquí está el estado inicial de la base de datos :

{ }

Cuando ahora ahorrar un nuevo usuario:

User user = new User(); user.setName("Albert"); mongoTemplate.save(user, "user");

La entidad se insertará en la base de datos:

{ "_id" : ObjectId("55b52bb7830b8c9b544b6ad5"), "_class" : "com.baeldung.model.User", "name" : "Albert" }

A continuación, veremos la misma operación, guardar , con la semántica de actualización.

5.3. Guardar - Actualizar

Veamos ahora guardar con semántica de actualización, operando en una entidad existente:

{ "_id" : ObjectId("55b52bb7830b8c9b544b6ad5"), "_class" : "com.baeldung.model.User", "name" : "Jack" }

Ahora, cuando guardemos el usuario existente, lo actualizaremos:

user = mongoTemplate.findOne( Query.query(Criteria.where("name").is("Jack")), User.class); user.setName("Jim"); mongoTemplate.save(user, "user");

La base de datos se verá así:

{ "_id" : ObjectId("55b52bb7830b8c9b544b6ad5"), "_class" : "com.baeldung.model.User", "name" : "Jim" }

As you can see, in this particular example, save uses the semantics of update, because we use an object with given _id.

5.4. UpdateFirst

updateFirst updates the very first document that matches the query.

Let's start with the initial state of the database:

[ { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Alex" }, { "_id" : ObjectId("55b5ffa5511fee0e45ed614c"), "_class" : "com.baeldung.model.User", "name" : "Alex" } ]

When we now run the updateFirst:

Query query = new Query(); query.addCriteria(Criteria.where("name").is("Alex")); Update update = new Update(); update.set("name", "James"); mongoTemplate.updateFirst(query, update, User.class);

Only the first entry will be updated:

[ { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "James" }, { "_id" : ObjectId("55b5ffa5511fee0e45ed614c"), "_class" : "com.baeldung.model.User", "name" : "Alex" } ]

5.5. UpdateMulti

UpdateMultiupdates all document that matches the given query.

First – here's the state of the database before doing the updateMulti:

[ { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Eugen" }, { "_id" : ObjectId("55b5ffa5511fee0e45ed614c"), "_class" : "com.baeldung.model.User", "name" : "Eugen" } ] 

Now, let's now run the updateMulti operation:

Query query = new Query(); query.addCriteria(Criteria.where("name").is("Eugen")); Update update = new Update(); update.set("name", "Victor"); mongoTemplate.updateMulti(query, update, User.class);

Both existing objects will be updated in the database:

[ { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Victor" }, { "_id" : ObjectId("55b5ffa5511fee0e45ed614c"), "_class" : "com.baeldung.model.User", "name" : "Victor" } ]

5.6. FindAndModify

This operation works like updateMulti, but it returns the object before it was modified.

First – the state of the database before calling findAndModify:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Markus" } 

Let's look at the actual operation code:

Query query = new Query(); query.addCriteria(Criteria.where("name").is("Markus")); Update update = new Update(); update.set("name", "Nick"); User user = mongoTemplate.findAndModify(query, update, User.class);

The returned user object has the same values as the initial state in the database.

However, the new state in the database is:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Nick" }

5.7. Upsert

The upsert works operate on the find and modify else create semantics: if the document is matched, update it, else create a new document by combining the query and update object.

Let's start with the initial state of the database:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Markus" }

Now – let's run the upsert:

Query query = new Query(); query.addCriteria(Criteria.where("name").is("Markus")); Update update = new Update(); update.set("name", "Nick"); mongoTemplate.upsert(query, update, User.class);

Here's the state of the database after the operation:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Nick" }

5.8. Remove

The state of the database before calling remove:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Benn" }

Let's now run remove:

mongoTemplate.remove(user, "user");

The result will be as expected:

{ }

6. Using MongoRepository

6.1. Insert

First – the state of the database before running the insert:

{ }

Now, when we insert a new user:

User user = new User(); user.setName("Jon"); userRepository.insert(user); 

Here's the end state of the database:

{ "_id" : ObjectId("55b4fda5830b550a8c2ca25a"), "_class" : "com.baeldung.model.User", "name" : "Jon" }

Note how the operation works the same as the insert in the MongoTemplate API.

6.2. Save Insert

Similarly – save works the same as the save operation in the MongoTemplate API.

Let's start by looking at the insert semantics of the operation; here's the initial state of the database:

{ }

Now – we execute the save operation:

User user = new User(); user.setName("Aaron"); userRepository.save(user);

This results in the user being added to the database:

{ "_id" : ObjectId("55b52bb7830b8c9b544b6ad5"), "_class" : "com.baeldung.model.User", "name" : "Aaron" }

Note again how, in this example, save works with insert semantics, because we are inserting a new object.

6.3. Save Update

Let's now look at the same operation but with update semantics.

First – here's the state of the database before running the new save:

{ "_id" : ObjectId("55b52bb7830b8c9b544b6ad5"), "_class" : "com.baeldung.model.User", "name" : "Jack"81*6 }

Now – we execute the operation:

user = mongoTemplate.findOne( Query.query(Criteria.where("name").is("Jack")), User.class); user.setName("Jim"); userRepository.save(user);

Finally, here is the state of the database:

{ "_id" : ObjectId("55b52bb7830b8c9b544b6ad5"), "_class" : "com.baeldung.model.User", "name" : "Jim" }

Note again how, in this example, save works with update semantics, because we are using an existing object.

6.4. Delete

The state of the database before calling delete:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Benn" }

Let's run delete:

userRepository.delete(user); 

The result will simply be:

{ }

6.5. FindOne

The state of the database when findOne is called:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Chris" }

Let's now execute the findOne:

userRepository.findOne(user.getId()) 

The result which will return the existing data:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Chris" }

6.6. Exists

The state of the database before calling exists:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Harris" }

Now, let's run exists:

boolean isExists = userRepository.exists(user.getId());

Which of course will return true.

6.7. FindAll W ith Sort

The state of the database before calling findAll:

[ { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Brendan" }, { "_id" : ObjectId("67b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Adam" } ]

Let's now run findAll with Sort:

List users = userRepository.findAll(Sort.by(Sort.Direction.ASC, "name"));

The result will be sorted by name in ascending order:

[ { "_id" : ObjectId("67b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Adam" }, { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Brendan" } ]

6.8. FindAll W ith Pageable

The state of the database before calling findAll:

[ { "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Brendan" }, { "_id" : ObjectId("67b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Adam" } ]

Let's now execute findAll with a pagination request:

Pageable pageableRequest = PageRequest.of(0, 1); Page page = userRepository.findAll(pageableRequest); List users = pages.getContent();

The resulting users list will be only one user:

{ "_id" : ObjectId("55b5ffa5511fee0e45ed614b"), "_class" : "com.baeldung.model.User", "name" : "Brendan" }

7. Annotations

Finally, let's also go over the simple annotations that Spring Data uses to drive these API operations.

@Id private String id;

The field level @Id annotation can decorate any type, including long and string.

If the value of the @Id field is not null, it's stored in the database as-is; otherwise, the converter will assume you want to store an ObjectId in the database (either ObjectId, String or BigInteger work).

Next – @Document:

@Document public class User { // }

This annotation simply marks a class as being a domain object that needs to be persisted to the database, along with allowing us to choose the name of the collection to be used.

8. Conclusion

This article was a quick but comprehensive introduction to using MongoDB with Spring Data, both via the MongoTemplate API as well as making use of MongoRepository.

The implementation of all these examples and code snippets can be found over on Github.